Cavity Control in a Single-Electron Quantum Cyclotron: An Improved Measurement of the Electron Magnetic Moment
نویسندگان
چکیده
A single electron in a quantum cyclotron yields new measurements of the electron magnetic moment, given by g/2 = 1.001 159 652 180 73 (28) [0.28 ppt], and the fine structure constant, α−1 = 137.035 999 084 (51) [0.37 ppb], both significantly improved from prior results. The static magnetic and electric fields of a Penning trap confine the electron, and a 100 mK dilution refrigerator cools its cyclotron motion to the quantum-mechanical ground state. A quantum nondemolition measurement allows resolution of single cyclotron jumps and spin flips by coupling the cyclotron and spin energies to the frequency of the axial motion, which is self-excited and detected with a cryogenic amplifier. The trap electrodes form a high-Q microwave resonator near the cyclotron frequency; coupling between the cyclotron motion and cavity modes can inhibit spontaneous emission by over 100 times the free-space rate and shift the cyclotron frequency, a systematic effect that dominated the uncertainties of previous g-value measurements. A cylindrical trap geometry creates cavity modes with analytically calculable couplings to cyclotron motion. Two independent methods use the cyclotron damping rate of an electron plasma or of the single electron itself as probes of the cavity mode structure and allow the identification of the modes by their geometries and couplings,
منابع مشابه
Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment
Measurements with a one-electron quantum cyclotron determine the electron magnetic moment, given by g/2 = 1.001 159 652 180 73(28)[0.28ppt], and the fine structure constant, α−1 = 137.035 999 084(51)[0.37ppb]. Announcements of these measurements [Phys. Rev. Lett. 97, 030801 (2006); 100, 120801 (2008)] are supplemented here with a more complete description of the one-electron quantum cyclotron a...
متن کاملNew measurement of the electron magnetic moment using a one-electron quantum cyclotron.
A new measurement resolves cyclotron and spin levels for a single-electron quantum cyclotron to obtain an electron magnetic moment, given by g/2=1.001 159 652 180 85 (76) [0.76 ppt]. The uncertainty is nearly 6 times lower than in the past, and g is shifted downward by 1.7 standard deviations. The new g, with a quantum electrodynamics (QED) calculation, determines the fine structure constant wi...
متن کاملFinding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
متن کاملسیستمهای ناکام و همبسته الکترونی
Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the hig...
متن کاملComputational Investigation on Naphthoquinone Derivatives :Nuclear Magnetic Resonance (NMR) and Quantum mechanic
Naphthoquinones are natural aromatic compounds that can be discovered in various plant families. In recent times a diversity of biological activities of these compounds has been reported. In most cases, these pharmacological activities are related to redox and acid-base properties, which can be modulated synthetically by modifying the substituents attached to the 1, 4- naphthoquinone ring, in o...
متن کامل